asc

Fractions

I. <u>Fractions</u>

- a. <u>Definition</u>: A fraction (also called a rational number) is a number that represents the quotient (or division) of two integers.
- b. $\frac{a}{b} = \frac{\text{Numerator}}{\text{Denominator}}$
- c. The *denominator* tells how many equal parts there are.
- d. The *numerator* tells how many of these parts are taken or used.
- e. <u>Simplest form</u>: A fraction is said to be written in *simplest form* when there are no common factors in the numerator and denominator. The fraction has been reduced completely.

II. Zero

a.
$$\frac{0}{c} = 0$$
 where $c \neq 0$.

In other words, zero in the numerator of a fraction yields zero for an answer as long as the denominator does not equal zero.

b.
$$\frac{c}{0}$$
 = undefined.

In other words, division by zero is impossible!

$$\frac{0}{0}$$
 = undefined.

III. <u>Mixed Numbers & Improper Fractions</u>

a. You can change a mixed number to an improper fraction:

b.
$$2\frac{3}{8} = 2\sqrt[4]{\frac{3}{8}} = \frac{(8 \times 2) + 3}{8} = \frac{19}{8}$$

Steps:

- 1. Multiply the denominator by the whole number.
- 2. Add to the numerator.
- 3. The product becomes the new numerator.
- 4. Denominator remains the same.

Multiplication and Division of Fractions IV.

1.
$$\frac{2}{3} \times \frac{7}{5} = \frac{14}{15}$$

Multiply across the numerator and across the denominator.

2.
$$\frac{2}{3} \times \frac{6}{5} = \frac{4}{5}$$

You may cancel before multiplying.

1.
$$\frac{2}{3} \div \frac{7}{5} = \frac{2}{3} \times \frac{5}{7} = \frac{10}{21}$$

b. 1. $\frac{2}{3} \div \frac{7}{5} = \frac{2}{3} \times \frac{5}{7} = \frac{10}{21}$ To divide, multiply by the <u>reciprocal</u>. **DO NOT** cancel before inverting!!!

2.
$$\frac{2}{3} \div \frac{19}{6} = \frac{2}{3} \times \frac{\cancel{6}}{\cancel{19}} = \frac{4}{\cancel{19}}$$

V. **Equivalent Fractions**

a. You may multiply of divide both numerator and denominator of a fraction by the same non-zero number without changing the fraction.

1.
$$\frac{2}{3} \times \frac{7}{7} = \frac{14}{21}$$
 and $\frac{14}{21} = \frac{2}{3}$

These are Equivalent Fractions.

2.
$$\frac{2}{3} \div \frac{5}{5} = \frac{2}{3} \times \frac{5}{5} = \frac{10}{15}$$
 and $\frac{10}{15} = \frac{2}{3}$

b. Your answer to a problem may be $\frac{2}{5}$, by the selection of answers may look like:

A.
$$\frac{5}{30}$$

B.
$$\frac{13}{30}$$

c.
$$\frac{10}{30}$$

A.
$$\frac{5}{30}$$
 B. $\frac{13}{30}$ C. $\frac{10}{30}$ D. $\frac{12}{30}$ E. $\frac{18}{30}$

E.
$$\frac{18}{30}$$

The correct answer is D because $\frac{12}{30} = \frac{2}{5}$.

VI. Addition and Subtraction of Fractions

a. You may add or subtract fractions with the <u>same denominator</u> by adding (or subtracting) the numerators and putting this answer over the common denominator.

Ex)
$$\frac{2}{5} + \frac{1}{5} = \frac{3}{5}$$

Ex)
$$\frac{7}{10} - \frac{1}{10} = \frac{6}{10} = \frac{3}{5}$$

- b. To add (or subtract) fractions with different denominators you must first find the <u>Least Common Denominator</u> (LCD) and convert each fraction to an equivalent fraction whose denominator is the LCD.
 - 1. <u>Definition</u>: The LCD is the smallest number that each denominator will divide into evenly. (The LCD is the smallest multiple that the given denominators have in common.)

<u>Example – Finding Common Denominators:</u>

$$\frac{1}{8} + \frac{5}{6} - \frac{7}{48}$$

Examine each of the given denominators and break them down into their prime factors:

$$8 = 2 \times 2 \times 2$$

$$6 = 2 \times 3$$

$$48 = 2 \times 2 \times 2 \times 2 \times 3$$

The LCD is equal to <u>every</u> factor of the first denominator multiplied by any new factor that appears in a subsequent denominator.

There are 4 two's in the last denominator and only 3 so far in the LCD so we need one more factor of two. The factor of 3 in the last denominator does not need to be repeated.

3 is a new factor from the 2nd denominator. (The 2 of the 2nd denominator does not have to be be repeated since there are already 3 factors of 2.

...so our LCD is **48**.

Now that we have our LCD, let's finish the problem:

Change each of the given fractions to an equivalent fraction whose denominator is the LCD.

$$\frac{1}{8} + \frac{5}{6} - \frac{7}{48} = \frac{6}{48} + \frac{40}{48} - \frac{7}{48}$$

Add the equivalent fractions and reduce the answer.

$$\frac{6}{48} + \frac{40}{48} - \frac{7}{48} = \frac{39}{48} = \frac{13}{16}$$

Practice Problems:

1.
$$\frac{3}{4}(20) =$$

2.
$$\frac{5}{8} + \frac{1}{8} =$$

3.
$$\frac{5}{8} \div \frac{1}{8} =$$

4.
$$\frac{1}{2} + \frac{1}{3} =$$

5.
$$\frac{2}{5} + 2\frac{5}{6} =$$

6.
$$\frac{5}{8} + \frac{3}{4} =$$

$$7. \quad \frac{3}{4} - \frac{1}{2} =$$

8.
$$4\frac{5}{6} - 2\frac{1}{3} =$$

9.
$$3\frac{15}{16} - \frac{7}{18} =$$

10.
$$\frac{9}{7} - \frac{3}{35} =$$

11.
$$\frac{2}{3} \times \frac{3}{8} =$$

12.
$$\frac{3}{5} \times \frac{1}{3} \times \frac{5}{8} =$$

13.
$$3\frac{1}{4} \times 8 =$$

14.
$$\frac{2}{3} \div \frac{4}{9} =$$

15.
$$\frac{2}{3} \div 4 =$$

16.
$$\frac{15}{16} \div \frac{3}{4} =$$

17.
$$\frac{11}{12} \div \frac{21}{4} =$$

18.
$$7 \div \frac{1}{2} =$$

19.
$$\frac{14}{0}$$
 =

20.
$$\frac{0}{14}$$
 =

21.
$$\frac{1}{13} \div 0 =$$

22.
$$0-\frac{1}{13}=$$

23.
$$\frac{4}{3} + \frac{3}{10} - \frac{5}{6} =$$

Answers to Fractions:

1. 15

2. $\frac{3}{4}$

3. 5

4. $\frac{5}{6}$

 $5. \quad 3\frac{7}{30}$

6. $\frac{11}{8}$ or $1\frac{3}{8}$

 $7 \cdot \frac{1}{4}$

8. $2\frac{1}{2}$

9. $3\frac{79}{144}$

10. $\frac{6}{5}$ or $1\frac{1}{5}$

11. $\frac{1}{4}$

12. $\frac{1}{8}$

13. 26

14. $1\frac{1}{2}$

15. $\frac{1}{6}$

16. $\frac{5}{4}$ or $1\frac{1}{4}$

17. $\frac{11}{63}$

18. 14

19. Undefined.

20. 0

21. Undefined.

22. $-\frac{1}{13}$

23. $\frac{24}{30} = \frac{4}{5}$